Pressure and Temperature Dependence of the Electrical Permittivities of Formamide and Water

By L. A. DUNN * AND R. H. STOKES

Department of Physical Chemistry, University of New England, Armidale, N.S.W. 2351, Australia.

rang. Fanaday Soc, 65, 14

Received 21st March, 1969

The electrical permittivities of formamide and water have been measured over the temperature range 5-65°C and at pressures up to 2000 bar, using a transformer bridge technique in the frequency-range 10-520 kHz. Densities of formanide at 1 bar and temperatures 5-65°C are also reported, and a confirmatory value for the compressibility at 25°C.

The theoretical evaluation of the limiting slope of the curves of apparent molar The theoretical evaluation of the limiting slope of the curves of apparent molar volumes of strong electrolytes against the square root of concentration requires a knowledge of the pressure dependence of the electrical permittivity of the solvent.¹ This quantity is also of interest in connection with theories of electrostriction.² While precise values are available for water,³ the most accurate work is confined to the region up to 1 000 bar. For formamide, an important solvent for electrolytes herause of its small molecular size and high permittivity no high-pressure values have the region up to 1000 bar. For formamide, an important solvent for electrolytes because of its small molecular size and high permittivity, no high-pressure values have been available and even the data at atmospheric pressure ⁴ are sparse. The present work, though its primary purpose is the study of formamide, includes data for water up to 2 000 bar in the range 10-65°C.

EXPERIMENTAL

PURIFICATION OF MATERIALS

Water was distilled and de-ionized, and when first put in the cell usually had a conductance of $\sim 8 \times 10^{-7}$ ohm⁻¹ cm⁻¹. This increased several-fold during the pressure-runs, without Formaria (are translated capacitance readings.

effect on the extrapolated capacitance readings. Formamide (analytical reagent grade) was fractionally frozen three times (final f.p., 2.38°C). The product was neutralized to bromothymol blue with a few drops of dilute sodium hydroxide solution and heated to ~40°C under reduced pressure. Further acidity developed during the process, and the neutralization was repeated until the liquid remained neutral on heating. It was then distilled at ~0.1 torr and 32-35°C. A conductance cell in the condensate was used to monitor the quality. After four such distillations the product had the following physical properties (literature values ¹⁰ in parenthesis):

f.p. conductance	2.50°C 2.8×10 ⁻⁶ ohm ⁻¹ cm ⁻¹	(2.55°C)
$d_{25^{\circ}}$ $d_{25^{\circ}}$ est. water content	1.446 51 1.129 15 g cm ⁻³ 0.025 %	(1.445 91) (1.129 18 g cm ⁻³)

The density of formamide was measured over the range 5-65°C with the results in table 1.

2906

• present address : Chem. Dept., University of Tasmania, Hobart, Australia.

TABLE	-DENSITY OF FORM	MAMIDE
r/°C	d/g cm-3	104a/(°C)-1
5.79	1.145 31,	7.33
15.00	1.137 590	7.41
25.00	1.129 147	7.49

5.19	1.145 511	1.33	
15.00	1.137 590	7.41	
25.00	1.129 147	7.49	
35.00	1.120 618	7.58	
45.00	1.112 130	7.67	
55.00	1.103 61.	7.76	
65.00	1.095 023	7.85	
	5.79 15.00 25.00 35.00 45.00 55.00 65.00	5.79 1.145 311 15.00 1.137 590 25.00 1.129 14, 35.00 1.120 618 45.00 1.112 130 55.00 1.103 616 65.00 1.095 023	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

L. A. DUNN AND R. H. STOKES

 $d/g \,\mathrm{cm}^{-3} = 1.150 \,172 - 8.372 \,5 \times 10^{-4} \,t - 1.740 \,5 \times 10^{-7} \,t^2$; $\alpha = -(\partial \ln d/\partial t)_P$.

The compressibility of formamide was measured in a preliminary model piezometer, giving $\beta(25^{\circ}C) = 4.11 \times 10^{-5} \text{ bar}^{-1}$ in good agreement with the value of $4.119 \times 10^{-5} \text{ bar}^{-1}$ obtained from the adiabatic compressibility (ultrasonic method) reported by Mikhailov, Rozina and Shutilov 5 combined with the heat capacity given by Egan and Luff.6

HIGH-PRESSURE CELL

The dielectric cell (fig. 1) consisted of two concentric platinum cylinders, the inner one A 2 cm long and 1.1 cm ext. diam., and the outer one B 4.5 cm long and 1.5 cm int. diam. One end of the outer cylinder was closed with a platinum disc C perforated with 4 small holes to permit the free passage of liquid, and a central hole to serve as a support for a solid glass cone D which was attached to the

a support for a solid gass cone D which was attached to the inside of the inner cylinder, thus locating that end rigidly with respect to the outer cylinder. Heavy platinum wires E were welded to the closed end of the outer cylinder and the other end of the inner cylinder, and were then scaled through the Pyrex glass cell with tungsten scals F. The outer cylinder, at its open end, was rigidly located by four indentations G in the glass cell wall. The outer cylinder projected about 1 cm beyond the ends of the The outer contact projected about r cm before the effects of the inner one to minimize and effects. The platinum surfaces were coated with platinum black, as for conductance cells; this vastly improved the constancy of the bridge readings at different frequencies. Though three-terminal cell designs are usually preferred for precise capacitance measurements, these were not possible with the pressure-bomb available to us, as this had only a single insulated electrical connection to the inside. Nevertheless, we believe that our cell design shows no significant disadvantages. The cell was filled with the liquid under study and a thin P.V.C.

bulb full of the liquid was attached to the filing-tube H to take up volume changes. The inner electrode was connected to the insulated pressure-sealed lead of the bomb, and the outer one to the earthed bomb casing. The pressure-vesel was filled with transformer oil. Pressure was developed by a small-stroke handtransformer oil. Pressure was developed by a small stroke hand-operated piston pump, and measured on a large Bourdon gauge readable within ~ 1.5 bar, which had been calibrated against a dead-weight gauge by the Defence Standards Laboratory. The vessel was immersed in an oil thermostat controlled to better than 0.01C°. Temperatures were measured with a Dymec quartz oscillator thermo-

2907

meter calibrated against a platinum resistance thermometer.

CALIBRATION OF THE CAPACITANCE-CELL

The cell was calibrated by two independent methods: (a) the capacitance at 25° C was measured with air and then deionized distilled water at 1 atm in the cell. Using the value of 78.304 given by Malmberg and Maryott ⁷ for the relative permittivity of water at 25°C, and

ELECTRICAL PERMITTIVITIES

2908

taking that of air from standard tables, lead capacitances were eliminated giving a vacuum capacitance $C_0 = 4.356 \text{ pF}$. (b) The cell was filled with a dilute solution of tetra-ethyl ammonium iodide in ethanol, and the resistance R of this solution was measured at 25° with a Leeds and Northrup Jones-Dike conductance bridge. The conductance κ of the solution was also measured in normal calibrated conductance calls. The cell-constant J of the capacitance-cell was then calculated as $J = R\kappa$. Since the electric field distribution is the same whether the cell is used for conductance or capacitance, the corresponding cell constants are related by are related by

$JC_0 = 8.854 \times 10^{-16}$ farad m⁻¹.

This method also yielded $C_0 = 4.356$ pF. For other temperatures and pressures, values of $C_0 = 4.356$ pF. For other temperatures and pressures, values of C_0 were calculated from the thermal expansion coefficients and compressibilities of platinum and Pyrex and the geometry of the cell.

FIG. 2.-Transformer bridge.

TRANSFORMER BRIDGE

A balanced, screened equal-arm transformer T (fig. 2) was specially built for bridge use. It was energized by an oscillator providing several volts at 10-520 kHz. The out-of-balance signal from the bridge was displayed on an oscilloscope. The standard arm of the bridge consisted of a calibrated General Radio 722 D precision capacitor CS, in parallel with a resistance-balance element RS which was specially designed to show a negligible capacitance change with change of resistance setting. CF and RF were fixed capacitance and resistance elements used to bring the standard arm readings to a suitable point on the scale. CX represents the dielectric cell, which could be switched in or out by unplugging a coaxial cable. An alternative substitution mode of the bridge was also available and was used for some of the measurements; the extrapolated capacitances in this mode agreed with the direct-reading ones within the reading uncertainty. A parallel R—C network with set values can match the impedance of the capacitance-cell at all frequencies only if the equivalent circuit of the edi is also a parallel R—C network. This is an oversimplification for any real cell containing a conducting liquid, because of the unusual frequency dependence of the Warburg impedance * W of the solution-electrode interface (fig. 3). However, the coating A balanced, screened equal-arm transformer T (fig. 2) was specially built for bridge use.

FIG. 3 .- Network electrically equivalent to capacitance cell.

L. A. DUNN AND R. H. STOKES

2909

of the electrodes with platinum black has the effect of shunting this awkward component of the electrones with plantant back has the electron statuting this awayed component of the impedance by a large simple capacitance C3, greatly reducing its influence on the apparent values of CX and RX. Graphs of the capacitance in the substitution network apparent values of CA and AA. Graphs of the capacitatics in the substitution herework against f^{-1} (f = frequency) were linear within 0.02 % over the range 10-520 kHz and the total change in capacitance over this range was only 0.15 %. Values extrapolated to infinite total change in capacitance over this range was only 0.15 %. Values extrapolated to infinite frequency on such graphs (fig. 4) were used in calculating all permittivities reported here.

FIG. 4 .-- Frequency dependence of capacitance; formamide at 45°C, 1 bar.

Since there is no dispersion in the frequency-range used, the permittivities so obtained are static values. The validity of the extrapolations is indicated by the fact that for most of the static values. The validity of the extrapolations is indicated by the fact that for most of the samples used the resistive component RX of the cell impedance decreased with time (owing to ionic contamination) without affecting the constancy of the extrapolated capacitance. In tests with water, the same results were obtained for highly purified water of conductance 8×10^{-7} ohm⁻¹ cm⁻¹, and a relatively contaminated sample of conductance $\sim 1 \times 10^{-5}$ ohm⁻¹ cm⁻¹. The resistance of the cell contents could drop to a few hundred ohms without affecting the extrapolated capacitance. affecting the extrapolated capacitance readings.

TABLE 2.-DIELECTRIC CONSTANTS OF WATER AT 1 BAR IN THE TEMPERATURE RANGE 5-65°C

t/°C		ðe.	$-10^{3} (\partial \ln \epsilon / \partial t) p = 1$ bas
5	85.75	0.005	4.542
10	83.82	0.003	4.545
15	81.97	-0.025	4.547
20	80.100	0.005	4.548
25	78.304*	0.000	4.548
30	76.54,	0.003	4.54 ₈
35	74.81.	0.005	4.546
40	73.150	-0.008	4.544
45	71.50	-0.004	4.54
50	69.89	0.002	4.537
55	68.33	-0.008	4.532
60	66.80	-0.004	4.52
65	65.303	0.002	4.51,

 ϵ (1 bar) = 87.727-0.398 1t+8.699×10⁻⁴ t²-7.948×10⁻⁷ t³ (1). $\delta\epsilon = \epsilon$ (eqn (1))- ϵ . alibration point

ELECTRICAL PERMITTIVITIES

2910

RESULTS

WATER.—Measurements at I bar were made at 5 deg intervals from 5 to 65°C (table 2). The pressure-dependence was measured at 10, 25, 45 and 65°C (table 3). FORMAMIDE.—Table 4 gives results at 1 bar in the range 5-60°C. Pressure runs were made at 10, 25 and 45°C (table 5). The pressure range at 10°C is restricted by the need to avoid solidification. At the foot of each table are eqn (1)-(4) fitted to the data by least-squares methods. Eqn (2) and (4), analogues of the Tait equation, gave much more satis-factory representations of the data than did simple polynomials in P.

TABLE 3.-DELECTRIC CONSTANTS OF WATER AT VARIOUS TEMPERATURES AND PRESSURES

Second Second					
P/bar	10°C	2	5°C	45°C	65°C
1	83.82 ₈	78.	304	71.50,	65 30-
163	84.421	78.	852	72.05.	65.87
339	85.081	79.	47.	72.62-	66.45.
517	85.757	80.	10,	73.25.	67.03.
689	86.37.	80.	67.	73.82.	67 54
862	86.99a	81.	30,	74.35.	68 01.
1 0 3 4	87.60,	81.	83.	74.89	68 54
1 207	88.237	82.	40,	75.45-	69.03.
1 379	88.816	82.	99.	75.95.	69.50.
1 551	89.38,	83.	49.	76.41.	69.90
1 724	89.94s	84.	02,	76.92.	70 38
1 896	90.52 ₈	84.	546	77.42.	70.84
2 068	91.10 _o	85.	09.	77.90	71.27.
At fixed	temperatures	,			
		$\varepsilon(P) = A$	+[BP/(1+C	[P)],	(2)
where A	B, C have th	e following	values :		
r/°C	A	103 <i>B</i> /bar	10 ³ C/bar	Pmax/bar	s.d. of e
10	83.810	3.840 9	4.394 5	2 100	0.012
25	78.281	3.618 1	4.840 0	2 100	0.018
45	71.486	3.5294	6.730 0	2 100	0.016
65	65.324	24 3.403 0		2 100	0.021
T	BLE 4DIFT	ECTRIC CONS	TANTS OF FO	PMANTDE AT 1	ALD DI
	Tł	E TEMPERAT	URE RANGE	5-60°C	SAK IN
-			đe	-103 (2 In e/2	t)p = 1 bar
1	\$ 117	7.19	-0.02	3.50)
3	D 115	5.07	0.04	3.57	7
1	5 113	3.04	0.01	3.64	
-				5.04	

-	117.12	-0.02	3.50	
30	115.07	0.04	3.57	
15	113.04	0.01	3.64	
239	111.00	-0.01	3.70	
25	109.03	-0.08	3.75	
30	106.85	0.05	3.80	
35	104.89	0.00	3.84	
-400	102.87	0.01	3.88	
45	100.89	0.00	3.90	
50	98.92	0.03	3.92	
55	97.09	-0.06	3.93	
60)	95.11	0.03	3.92	
s(1 har) = 1	119.208-0.408 3	$t - 2.311 \times 10^{-4} t^{2} + 5$	$0.833 \times 10^{-6} t^3$. (3)	

L. A. DUNN AND R. H. STOKE	S
----------------------------	---

TABLE 5 .- DIELECTRIC CONSTANTS OF FORMAMIDE AT VARIOUS TEMPERATURES AND PRESSURES

		P/b	ar		10	°C			25	°C			45°	C	
			1		115	.066			109.	.027			100.	893	
	20 115 50 115			.172			109	.146			101.	012			
				.308			109	.300			101.	151			
		12	120 11		115				109	.642			101.	514	
		15	56	115		.810			109	.80,			101.	731	
		19	15		115	.990			109	.98			101.	907	
		33	19		116	.69.			110	.64,			102.	607	
		41	4		117	.00,			110	.96.			102.	987	
		51	17		117	47.			111	.38,			103.	45.	
		65	20		118	14.			112	.08.			104.	15.	
		86	52		118	78.			112	75.			104.	85.	
		103	14						113	32.			105	55.	
		100	7						114	01.			106	17.	
		120	70						114	50			106	75.	
		15	17						115	11.			107	28.	
		17.	24						115	64			107	81.	
		1/4	24						114	15			108	31	
		18:	06						110	.133			100	76	
	-	200	00						Inc	.047			100	.105	
	A	tm	xed	temp	perat	ures,	- (1	4+1	RPI	1+0	PII				(4)
				D	Cha	ve th	- fol	lowin	or va	lues					(1)
		hor			L 11a	AC CI	10 101	10 will	15 10	IIII-3	•				
	w	her	CA	, .,			10100			INCOM		P	- The		= d of
	wl //°C	her	CA	A			103B/1	ar		104C/b	ar	Pn	nax/bi	ar	s.d. of
	wl //°C 10	her	C A	A 115.0	54		103B/1	sar 5		104C/b	ar 9	Pa	900	h.r	s.d. of 0.014
	wl 10 25	her	C A	A 115.0 109.0	54		1038/1 5.133 4.880	5 1	-	104C/b 2.116 1.598	9 2	P.	900 100	hr	s.d. of 0.014 0.020
	wi 10 25 45	her	C A	A 115.0 109.0 100.8	54 55 888		10 ³ <i>B</i> /0 5.133 4.880 5.474	5 1 1 8		104C/b 2.116 1.598 2.105	9 2 1	2 2	900 100 100	hr.	0.014 0.020 0.011
0	wi 10 25 45	her	C A	A 115.0 109.0 100.8	154 155 188		103 <i>B/</i> 1 5.133 4.880 5.474	5 1 1 8		104C/E 2.116 1.598 2.105	9 2 1	2 2	900 100 100	hr	s.d. of 0.014 0.020 0.013
0	wi 10 25 45 920	her		A 115.0 109.0 100.8	054 055 1888		103 <i>B</i> /0 5.133 4.880 5.474	bar 5 11 18	-	104C/b 2.116 1.598 2.105	9 2 1	Pn 2 2 2	900 100 100	r	s.d. of 0.014 0.020 0.011
0	wi 10 25 45 920 015	her		▲ ■	054 055 888 ▲		103 <i>B</i> /1 5.133 4.880 5.474	5))1 88		104C/b 2.116 1.598 2.105	ar 9 2 1	Pn 2 2 2	900 100 100	r	s.d. of 0.014 0.020 0.011
0	wi 10 25 45 920 015	her		▲ □	054 055 188		103 <i>B</i> /1 5.133 4.880 5.474	5))1 8		104C/b 2.116 1.598 2.105	ar 9 2 1	Pa 2 2	900 100 100	r	s.d. of 0.014 0.020 0.011
0	wi 10 25 45 920 015	her		▲ □	054 055 188	•	103 <i>B</i> /1 5.133 4.880 5.474	5))1 8		104C/E 2.116 1.598 2.105	ar 9 2 1	Pn 2 2	900 100 100	r	s.d. of 0.014 0.020 0.011
0	wi 10 25 45 920 015	her		▲ □	±	▲	103 <i>B</i> /1 5.133 4.880 5.474	5 1 1 8		104C/E 2.116 1.598 2.105	ar 9 2 1	Pn 2 2	900 100 100	F.	s.d. of 0.014 0.020 0.011
0	wi 10 25 45 920 015	her		▲ □	▲ □	▲ □	103 <i>B</i> /1 5.133 4.880 5.474	5 1 1 8		104C/E 2.116 1.598 2.105	ar 9 2 1	Pn 22	900 100 100		s.d. of 0.014 0.020 0.011
0	wi 10 25 45 920 015 010	her		▲ □	∆ A	۵ ۵	103 <i>B</i> /0 5.133 4.880 5.474	5 1 1 8		104C/te 2.116 1.598 2.105	ar 9 2 1	Pn 2 2 2	900 100 100	hr	s.d. of 0.014 0.024 0.011
0	wi 1°C 25 45 920 015 - 015 -	her		▲ □	▲ ▲	۵.	103 <i>B</i> /0 5.133 4.880 5.474	Dar 5)1 18		104C/t€ 2.116 1.598 2.105	ar 9 2 1	Pn 222	900 100 100	Ar	s.d. of 0.014 0.024 0.011
0	wi 1°C 10 25 45 0°20 0°15 - 0°15 - 0°10 - 0 0°10 - 0 0 0 0 0 0 0 0 0 0 0 0 0	her		▲ □	▲ ▲	۵.	10 ³ <i>B</i> /0 5.133 4.880 5.474	Dar 5)1 18		10 ⁴ <i>C</i> /k 2.116 1.598 2.105	ar 9 2 1	Pn 2 2 2	900 100 100	0	s.d. of 0.014 0.020 0.011
	wi r/°C 10 25 45 0015 - 0010 - 0010 - 0005 - 0000 -	-	0	▲ □	△	۵.	10 ³ <i>B</i> /1 5.133 4.880 5.474	0 0 0	0	۵۵ ۵	o 0	Pn 2 2 2 2	900 100 100	0	0.014 0.020 0.011
	wi 1)°C 25 45 0015 		2	▲ □	△	۵. ۵	۵۱۵۶۵۲ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰	Dar 5)1 18	0	▲ 	0 0	P _n 2 2 2 2 0 0	0 0	0	s.d. of 0.014 0.024 0.011
	wi t/*C 10 25 45 20 015 - 0015 - 0005 - 0005 - 0000 -		0	▲ □	≥54 ≥55 ≥888 ▲	<u>م</u>	10 ³ <i>B</i> /1 5.133 4.880 5.474 ▲	Dar 5)11 8	0	۵ ۵	o 0	Pn 2 2 2 2 2	aax764 900 100 100	0	s.d. of 0.014 0.024 0.011
	wi r/*C 10 25 45 20 015 - 005 - 005 - 005 - 005 - 005 - 005	her	0	▲ 0	≥54 ≥55 ≥888 ▲	<u>۸</u>	10 ³ <i>B</i> /1 5.133 4.880 5.474 ▲	0 0	0	▲ 	o 0	P = = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ax/b/ 900 100 100 100	0 0	s.d. of 0.014 0.024 0.011
0 1 1 0 0	wi r/*C 10 25 45 720 015 - 015 - 005 - 000 - - - - - - - - - - - - -		0	▲ 0 0 0 0 0 0 0 0 0 0 0 0 0	≥54 ≥55 ≥888 ▲	<u>م</u>	1038/1 5.133 4.880 5.474 ■	0 0	0	▲ 	o 0	P _a 2 2 2 2 0 0	ax/b/ 900 100 100 100	0 1	s.d. of 0.014 0.024 0.01:

FIG. 5.—Dielectric constants of water at 1 bar—comparison with earlier work. $\delta \varepsilon = \varepsilon(\text{lit.}) - \varepsilon$ (this work): \bigcirc , ref. (7); \boxdot , ref. (3); \triangle , ref. (9).

ELECTRICAL PERMITTIVITIES

COMPARISONS WITH OTHER DATA

WATER.—Fig. 5 compares our results at 1 bar (solid line) with those of three recent high-precision studies. Our results agree well with those of Malmberg and Maryott ⁷ at all temperatures. Those of Owen et al.³ and of Vidulich and Kay³ are up to 0.14 higher at low temperatures, and cross ours at 40°C. Owen et al.³ used a radio-frequency technique. We cannot explain this difference, especially as our measurements of the pressure-dependence at constant temperature agree well with those of Owen et al.⁴ as shown in table 6 where values of ($\partial \ln \epsilon/\partial P$)⁴ calculated from eqn (2) are compared with the corresponding values given by the equation of Owen et al.⁴

TABLE 6.—PRESSURE-DEPENDENCE OF THE DIELECTRIC CONSTANT OF WATER

			(a) this w	vork; (b) (wen et al.3			
P/bar	10	0°C	21	10%(2 In a)	OP)T/bar-1			
	(a)	(6)	(a)	(6)	(a) 4:	S°C (h)	6	5°C
1 200 400 600 800 1 000	45.82 44.63 43.48 42.37 41.31 40.28	45.84 44.68 43.53 42.37 41.21 40.05	46.21 44.93 43.69 42.50 41.37 40.27	47.10 45.67 44.24 42.81 41.38 39.95	49.36 47.61 45.93 44.35 42.85	49.18 47.47 45.76 44.05 42.34	(a) 52.08 49.75 47.57 45.52 43.61	(b) 51.72 49.83 47.93 46.03 44.13

FORMAMIDE.—The only other data at 1 bar are those of Leader * at temperatures of 15. 35°C. His cell was calibrated with water using an older value. On adjusting to the basis $\epsilon_{H,O}$ (25°C, 1 bar) = 78.30₄ his results agree with ours within 0.1%. No other results at high pressures have been reported. Values of $(\partial \ln \epsilon/\partial P)$ for formamide calculated from eqn (4) are given in table 7.

TABLE 7PR	ESSURE-DEPENDENCE OF
THE DIELECTR	IC CONSTANT OF FORM- DE AT 1 BAR
*/*C	106(3 In a/3P)+/bar-1
10	44.59
25	44.73
45	54.24

We thank Dr. S. D. Hamann of the Division of Physical Chemistry, C.S.I.R.O., Melbourne, for the loan of the pressure-vessel, and for advice on high-pressure equipment. The quartz thermometer was provided by a grant from the Australian

H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, (Reinhold, N.Y. 1963).
J. Padova, J. Chem. Phys., 1963, 39, 1552; E. Whalley, ibid., 1963, 38, 1400.
B. B. Owen, R. C. Miller, C. E. Milner and H. L. Cogan, J. Phys. Chem., 1961, 65, 2065.
G. R. Leader, J. Amer. Chem. Soc., 1951, 73, 856.
I. G. Mikhaidov, M. V. Rozzina and V. A. Shutilov, Akust. Zhur., 1964, 10, 213.
E. P. Egan and B. B. Luff, J. Chem. Eng. Data, 1966, 11, 194.
C. G. Malmberg and A. A. Maryott, J. Res. Nat. Bur. Stand., 1956, 56, 1.
D. C. Grahame, Ann. Rez. Phys. Chem., 1962, 66, 383; G. A. Vidulich, D. F. Evans and R. L. Kay, ibid., 1967, 71, 656.
J. Timmermans, Physico-Chemical Constants of Pure Organic Compounds. (Elsevier Publishing Co. Inc., New York, 1950).

Heat Conductivity of the Slowly Dissociating System $2NO_2 \neq 2NO + O_2$ from 200 to 400°C

· · I COMPACTING

1.15

3254 and and

d bat

BY T. K. RAI DASTIDAR, P. K. BHATTACHARYYA AND A. K. BARUA, Indian Association for the Cultivation of Science, Calcutta-32, India

Received 17th December, 1968

The thermal conductivity of the slowly dissociating system 2NO₂ =2NO+O₂ has been measured The thermal conductivity of the slowing dissociating system $2NO_2 = 2/NO + O_2$ has been measured from above 200 to 400°C by the hot wire technique. On comparison of the experimental data with the theories of heat transfer in reacting gases, it is found that the effect of chemical reaction upon the heat conductivity is apparent at 350°C and higher temperatures, while at 300°C and below it is negligibly small. However, the present theories of heat conductivity in reacting gas mixtures are found to be inadequate to account for the effects quantitatively.

The problem of heat transfer in dissociating and chemically reacting gas mixtures has been treated theoretically by Hirschfelder ¹ and Butler and Brokaw ² by assuming local chemical equilibrium. Subsequently, Secrest and Hirschfelder ³ considered the effect of relaxation of chemical energy on the heat conductivity. A more rigorous treatment of relaxation effects was given by Brokaw ⁴ when the departure from the local chemical equilibrium is slight. It has been suggested by Rai Dastidar and Barua⁵ that, owing to the effect of chemical reaction on diffusion, the heat transport due to chemical enthalpy will be less than that obtained by using the diffusion coefficient calculated on the Chapman-Enskog theory.6 This effect, which should be present even when the condition of local chemical equilibrium is satisfied, has been confirmed by experiment.7

For the $N_2O_4 \rightleftharpoons 2NO_2$ system the reaction rate is fast but that for $2NO_2 \rightleftharpoons 2NO_+$ O_2 is slow at ordinary temperatures and the effect of chemical reaction on heat conductivity is almost negligible. However, this rate increases with the increase of temperature.⁸ Consequently at higher temperatures transport of chemical enderty of the state o thalpy should play a significant role. Experiments on the system $2NO_2 \Rightarrow 2NO + O_2$ have been previously confined to the range below 200° C. A study of the heat conductivity of this system at higher temperatures would enable a more critical test of the range of validity of Brokaw's theory to be made. In this paper we report the heat conductivity of $2NO_2 \rightleftharpoons 2NO + O_2$ in the temperature range 200-400°C and at various pressures.

EXPERIMENTAL

For the heat conductivity measurements, the thick-wire-variant of the hot-wire method was used. The conductivity cell used was similar to that of Rai Dastidar and Barua.⁷ The electrical leads were insulated from the bath liquid by porcelain insulators enclosed in stainless steel tubes. The cell was immersed in a high-temperature bath prepared by melting a mixture of sodium and potassium nitrates taken in equal proportions. The insulation between the electrical leads and the body of the cell prevents any electrolytic action in the bath liquid. The temperature was controlled by an electronic controller; the control at the highest temperature was $\pm 0.2^{\circ}$ C and better than this at the lower temperatures.

To provide a steady state in the cell, a large cube made of stainless steel (volume 500 ml)

2913